clock menu more-arrow no yes mobile

Filed under:

Football, Innovation, and the Evolution of a Game. What's Next?

The following post is quite long. If you're in a hurry, stop now, and read later, if at all. It is not intended to generate some firestorm debate. It is merely an attempt by me to provide you with something different to read and think about during this long last stretch of the offseason. Many will think that the ideas contained within are not quite organized coherently. I would not disagree. But, hopefully it's entertaining and thought-provoking nevertheless. As always, feedback is welcome.

*****************************

Nathan Myhrvold met Jack Horner on the set of the “Jurassic Park” sequel in 1996. Horner is an eminent paleontologist, and was a consultant on the movie. Myhrvold was there because he really likes dinosaurs. Between takes, the two men got to talking, and Horner asked Myhrvold if he was interested in funding dinosaur expeditions.

Myhrvold is of Nordic extraction, and he looks every bit the bearded, fair-haired Viking—not so much the tall, ferocious kind who raped and pillaged as the impish, roly-poly kind who stayed home by the fjords trying to turn lead into gold. He is gregarious, enthusiastic, and nerdy on an epic scale. He graduated from high school at fourteen. He started Microsoft’s research division, leaving, in 1999, with hundreds of millions....

“What you do on a dinosaur expedition is you hike and look at the ground,” Myhrvold explains. “You find bones sticking out of the dirt and, once you see something, you dig.” In Montana, which is prime dinosaur country, people had been hiking around and looking for bones for at least a hundred years. But Horner wanted to keep trying. So he and Myhrvold put together a number of teams, totalling as many as fifty people. They crossed the Fort Peck reservoir in boats, and began to explore the Montana badlands in earnest. They went out for weeks at a time, several times a year. They flew equipment in on helicopters. They mapped the full dinosaur ecology—bringing in specialists from other disciplines. And they found dinosaur bones by the truckload.

Once, a team member came across a bone sticking out from the bottom of a recently eroded cliff. It took Horner’s field crew three summers to dig it out, and when they broke the bone open a black, gooey substance trickled out—a discovery that led Myhrvold and his friend Lowell Wood on a twenty-minute digression at dinner one night about how, given enough goo and a sufficient number of chicken embryos, they could “make another one.”

There was also Myhrvold’s own find: a line of vertebrae, as big as apples, just lying on the ground in front of him. “It was seven years ago. It was a bunch of bones from a fairly rare dinosaur called a thescelosaurus. I said, ‘Oh, my God!’ I was walking with Jack and my son. Then Jack said, ‘Look, there’s a bone in the side of the hill.’ And we look at it, and it’s a piece of a jawbone with a tooth the size of a banana. It was a T. rex skull. There was nothing else it could possibly be.”

People weren’t finding dinosaur bones, and they assumed that it was because they were rare. But—and almost everything that Myhrvold has been up to during the past half decade follows from this fact—it was our fault. We didn’t look hard enough.

Myhrvold gave the skeleton to the Smithsonian. It’s called the N. rex. “Our expeditions have found more T. rex than anyone else in the world,” Myhrvold said. “From 1909 to 1999, the world found eighteen T. rex specimens. From 1999 until now, we’ve found nine more.” Myhrvold has the kind of laugh that scatters pigeons. “We have dominant T. rex market share.”

The previous excerpt is from a recent article by Malcolm Gladwell about how innovative ideas, even ones that are big enough to change society, are not so rare as we might think. It prompted me to think about the game of football and what changes, if any, might be in store for the great game in the future. Though the fundamental structure of football is largely the same as it was early in the 20th century, I have to believe that if the game's pioneer players from back then would have a hard time recognizing what us fans presently see each Sunday.

How useful is it to have a group of really smart people brainstorm for a day? When Myhrvold started out, his expectations were modest. Although he wanted insights like Alexander Graham Bell’s, Bell was clearly one in a million, a genius who went on to have ideas in an extraordinary number of areas—sound recording, flight, lasers, tetrahedral construction, and hydrofoil boats, to name a few. The telephone was his obsession. He approached it from a unique perspective, that of a speech therapist. He had put in years of preparation before that moment by the Grand River, and it was impossible to know what unconscious associations triggered his great insight. Invention has its own algorithm: genius, obsession, serendipity, and epiphany in some unknowable combination. How can you put that in a bottle?

But then, in August of 2003, I.V. [I.V. is short for Intellectual Ventures - the company Myhrvold started to facilitate the creation of new, innovative ideas] held its first invention session, and it was a revelation. “Afterward, Nathan kept saying, ‘There are so many inventions,’ ” Wood recalled. “He thought if we came up with a half-dozen good ideas it would be great, and we came up with somewhere between fifty and a hundred. I said to him, ‘But you had eight people in that room who are seasoned inventors. Weren’t you expecting a multiplier effect?’ And he said, ‘Yeah, but it was more than multiplicity.’ Not even Nathan had any idea of what it was going to be like.”

The original expectation was that I.V. would file a hundred patents a year. Currently, it’s filing five hundred a year. It has a backlog of three thousand ideas. Wood said that he once attended a two-day invention session presided over by Jung, and after the first day the group went out to dinner. “So Edward took his people out, plus me,” Wood said. “And the eight of us sat down at a table and the attorney said, ‘Do you mind if I record the evening?’ And we all said no, of course not. We sat there. It was a long dinner. I thought we were lightly chewing the rag. But the next day the attorney comes up with eight single-spaced pages flagging thirty-six different inventions from dinner. Dinner.”

And the kinds of ideas the group came up with weren’t trivial. Intellectual Ventures just had a patent issued on automatic, battery-powered glasses, with a tiny video camera that reads the image off the retina and adjusts the fluid-filled lenses accordingly, up to ten times a second. It just licensed off a cluster of its patents, for eighty million dollars. It has invented new kinds of techniques for making microchips and improving jet engines; it has proposed a way to custom-tailor the mesh “sleeve” that neurosurgeons can use to repair aneurysms.

Ok, ok. So we're clearly talking about a collection of some of the most brilliant people in the world here. What the hell does this have to do with football? Well, perhaps not much, but what if people with a totally fresh set of eyes took a long hard look at how coaches and teams went about playing the game? Perhaps even folks who had no interest in football.

Last March, Myhrvold decided to do an invention session with Eric Leuthardt and several other physicians in St. Louis. Rod Hyde came, along with a scientist from M.I.T. named Ed Boyden. Wood was there as well.

“Lowell came in looking like the Cheshire Cat,” Myhrvold recalled. “He said, ‘I have a question for everyone. You have a tumor, and the tumor becomes metastatic, and it sheds metastatic cancer cells. How long do those circulate in the bloodstream before they land?’ And we all said, ‘We don’t know. Ten times?’ ‘No,’ he said. ‘As many as a million times.’ Isn’t that amazing? If you had no time, you’d be screwed. But it turns out that these cells are in your blood for as long as a year before they land somewhere. What that says is that you’ve got a chance to intercept them.”

How did Wood come to this conclusion? He had run across a stray fact in a recent issue of The New England Journal of Medicine. “It was an article that talked about, at one point, the number of cancer cells per millilitre of blood,” he said. “And I looked at that figure and said, ‘Something’s wrong here. That can’t possibly be true.’ The number was incredibly high. Too high. It has to be one cell in a hundred litres, not what they were saying—one cell in a millilitre. Yet they spoke of it so confidently. I clicked through to the references. It was a commonplace. There really were that many cancer cells.”

Wood did some arithmetic. He knew that human beings have only about five litres of blood. He knew that the heart pumps close to a hundred millilitres of blood per beat, which means that all of our blood circulates through our bloodstream in a matter of minutes. The New England Journal article was about metastatic breast cancer, and it seemed to Wood that when women die of metastatic breast cancer they don’t die with thousands of tumors. The vast majority of circulating cancer cells don’t do anything.

“It turns out that some small per cent of tumor cells are actually the deadly ones,” he went on. “Tumor stem cells are what really initiate metastases. And isn’t it astonishing that they have to turn over at least ten thousand times before they can find a happy home? You naïvely think it’s once or twice or three times. Maybe five times at most. It isn’t. In other words, metastatic cancer—the brand of cancer that kills us—is an amazingly hard thing to initiate. Which strongly suggests that if you tip things just a little bit you essentially turn off the process.”

That was the idea that Wood presented to the room in St. Louis. From there, the discussion raced ahead. Myhrvold and his inventors had already done a lot of thinking about using tiny optical filters capable of identifying and zapping microscopic particles. They also knew that finding cancer cells in blood is not hard. They’re often the wrong size or the wrong shape. So what if you slid a tiny filter into a blood vessel of a cancer patient? “You don’t have to intercept very much of the blood for it to work,” Wood went on. “Maybe one ten-thousandth of it. The filter could be put in a little tiny vein in the back of the hand, because that’s all you need. Or maybe I intercept all of the blood, but then it doesn’t have to be a particularly efficient filter.”

Wood was a physicist, not a doctor, but that wasn’t necessarily a liability, at this stage. “People in biology and medicine don’t do arithmetic,” he said. He wasn’t being critical of biologists and physicians: this was, after all, a man who read medical journals for fun. He meant that the traditions of medicine encouraged qualitative observation and interpretation. But what physicists do—out of sheer force of habit and training—is measure things and compare measurements, and do the math to put measurements in context. At that moment, while reading The New England Journal, Wood had the advantages of someone looking at a familiar fact with a fresh perspective.

That was also why Myhrvold had wanted to take his crew to St. Louis to meet with the surgeons. He likes to say that the only time a physicist and a brain surgeon meet is when the physicist is about to be cut open—and to his mind that made no sense. Surgeons had all kinds of problems that they didn’t realize had solutions, and physicists had all kinds of solutions to things that they didn’t realize were problems. At one point, Myhrvold asked the surgeons what, in a perfect world, would make their lives easier, and they said that they wanted an X-ray that went only skin deep. They wanted to know, before they made their first incision, what was just below the surface. When the Intellectual Ventures crew heard that, their response was amazement. “That’s your dream? A subcutaneous X-ray? We can do that.”

Insight could be orchestrated: that was the lesson. If someone who knew how to make a filter had a conversation with someone who knew a lot about cancer and with someone who read the medical literature like a physicist, then maybe you could come up with a cancer treatment. It helped as well that Casey Tegreene had a law degree, Lowell Wood had spent his career dreaming up weapons for the government, Nathan Myhrvold was a ball of fire, Edward Jung had walked across Texas. They had different backgrounds and temperaments and perspectives, and if you gave them something to think about that they did not ordinarily think about—like hurricanes, or jet engines, or metastatic cancer—you were guaranteed a fresh set of eyes.

The article, which contains other anecdotes and hypotheses, was fascinating to me for a number of reasons not worth discussing on a football oriented site, but it made me think about the game. My personal opinion is that it is just a matter of time before the strategy of the game evolves drastically, particularly on offense. 

Because of the strict set of rules defining the game, there's only so much that can change. But I immediately think of the offenses orchestrated by Mike Leach at Texas Tech University. Despite being in the veritable wasteland that is West Texas, Coach Leech has managed to assemble offenses that annually outpace the competition throwing the ball. People argue that his philosophy puts too much pressure on his defense, which accounts for why Texas Tech has not yet managed to have a truly breakthrough season. My take, however, is that he simply doesn't have the horses on defense to get the job done. What if you combined the defensive talent at a school like Ohio State, with the high-octane offensive attack that he's able to put together with merely so-so athletic talent? My guess? Sheer domination.

Another relevant example of how NFL coaches and coordinators are inefficient in their decision making and strategic choices is in their decisions on 4th down. Cal professor David H. Romer examined these inefficiencies in a paper for the National Bureau of Economic Research, yet nearly 6 years later, not much has changed.

Why? Is this just an act of stubborn pride, not wanting some academic to tell real football men how to do their job? Perhaps, and while I wonder how long that mindset can last in such a hyper-competitive industry, I can also understand where it's coming from. My point - and I don't really know if you can call it that - is that even since the 1980s, we've seen a substantial change in the way the game is played. What's next? And what fresh set of eyes might be responsible for helping push the game towards its next evolutionary milestone?

When Bill Walsh implemented the West Coast offense, it was considered gimmicky. Now, he's considered a genious. What about 'trick'' plays? They're considered gimmicky, and coaches are scoffed at when they do not work. But why do offenses limit the amount of preparation defenses need to do by keeping everything so close to the vest? Just because they are not part of a team's regular arsenal of plays, does not make them poor strategy. With all the archived film, not to mention the improved speed and athleticism on defense, it seems to be that teams should be employing new ways to confuse the defense, in whatever way possible, 'gimmicks' and critics be damned.

Your guess is as good as mine as to what the next 'gimmick' that sticks will be, but I, for one, believe the game will continue to evolve so long as new innovative minds are afforded the opportunity to participate in the game. And perhaps more importantly, if teams look outside the traditional ranks of scouts and 'football' minds for help.